
Assessing Code Decay: A Data-driven Approach

Ajay Bandi
Math., Computer Science & Information Systems

Northwest Missouri State University
Maryville, MO, 64468, USA

ajay@nwmissouri.edu

Edward B. Allen and Byron J. Williams
Computer Science and Engineering

Mississippi State University
Mississippi State, MS, 39762, USA
(allen, williams)@cse.msstate.edu

Abstract

Code decay is a gradual process that negatively im-
pacts the quality of a software system. Developers need
trusted measurement techniques to evaluate whether
their systems have decayed. This paper aims to assess
code decay by discovering software architectural viola-
tions. We propose a methodology that uses Lightweight
Sanity Check for Implemented Architectures (LiSCIA)
to derive architectural constraints represented by can-
use and cannot-use phrases. Our methodology also
uses a reverse engineering tool to discover architectural
violations. We also introduce measures that indicate
code decay in a software system. We conducted a
case study of a proprietary system (14 versions) to
demonstrate our methodology for assessing code decay.
Resulting architectural constraints and architectural vi-
olations were validated by the expert of the system. The
proposed code decay metrics can give managers data-
driven insight into the process of software development,
the history of the software product, and the status
of unresolved violations. Our results and qualitative
analysis showed that the methodology was effective and
required a practical level of effort for moderate sized
software systems.

keywords: architecture constraints, architecture
violations, data-driven approach, code decay metrics,
reverse engineering, software evolution

1 Introduction

Properly implemented, code should follow specified
architectural constraints and conform to the conceptual
architecture. However, architectural violations are
often due to new interactions between modules that
were originally unintended in the planned design [9,
12]. Such violations may be caused by adding new
functionality, or modifying existing functionality to
implement changing requirements or to repair defects.
When such changes are inconsistent with the planned
architecture and design principles, the system becomes

more complex, hard to maintain, and defect prone
[6, 10, 13]. Often, redesign or reengineering of the
whole system is the only practical solution for this
problem [7]. The phenomenon of gradual increase
in software complexity due to unintended interactions
between modules that are hard to maintain has been
termed architectural degeneration and code decay [6, 8].
Research in software evolution shows that violations
of architecture and design rules cause code to decay
[6, 7, 9]. Code decay is a gradual process that degrades
the maintainability of the software system. In this
paper, code decay refers to the rate of violations of
architecture and design rules over time that make
software more difficult to modify. This research focuses
on violations of architectural constraints. Architectural
constraints are the architectural rules represented by
can-use or cannot-use phrases. Some authors define
“code decay” more generally or with respect to non-
architectural characteristics [2].

Using a data-driven approach to minimizing code
decay is important to software engineering practitioners
who are focused on improving software quality during
software maintenance. Code decay is an attribute that
is evident only in retrospect. It is usually assumed that
“decay” is a gradual process that goes unnoticed until
a crisis occurs. One can detect decay by comparing
measured attributes from the past with current values,
and determine that quality has “decayed.” A challenge
is using data-driven approaches to detect incipient
“decay” well before a crisis develops. The main goal
of our research is to find ways to derive architectural
constraints, to detect architectural violations, and to
assess code decay of software over multiple versions.
This paper presents results from Bandi’s dissertation
[1]. The remainder of this paper is organized as follows.
Section 2 details our proposed methodology for practi-
tioners. Section 3 describes the case study. Section 4
presents our case study results and its analysis. Section
5 discusses results, and threats to validity. Section 6
presents conclusions and future work.

978-1-943436-01-9 / copyright ISCA, SEDE 2015
October 12-14, 2015, San Diego, California, USA

2 Methodology for Practitioners

To apply our methodology, the practitioner uses tools
to extract the architecture of the software, to calculate
the architecture dependencies, to identify architectural
violations for a given set of architectural constraints
represented by can-use or cannot-use phrases, and
LiSCIA questionnaire [3, 4]. We used Lattix for extract-
ing the architecture dependencies, and for identifying
architectural violations. A similar reverse engineering
tool would also work. Given a software system that has
multiple versions, the following procedure presents the
major steps in our methodology.

(1) While there is an unanalyzed refactored version

(a) Choose an initial or refactored version that is
representative of the architecture.

(b) Choose the subsequent versions.

(c) Derive the architectural constraints based on
initial or refactored version.

(d) While not done with all the versions

i. Discover current architectural violations
in a version.

(e) End while

(f) Identify new violations and solved violations
in each version.

(g) Assess code decay over multiple versions.

(2) End while

Figure 1 shows the methodology for deriving ar-
chitectural constraints and discovering architectural
violations. The roles of the participants when applying
our methodology are evaluator, expert, and analyst.
The same person can fulfill multiple roles and multiple
people can fulfill the same roles. In order to get
the most out of the evaluation, at least two persons
should be involved in order to create discussion. One
important element of our methodology is that an expert
of the system must participate in deriving architectural
constraints.

In our methodology we use LiSCIA [3, 4] to derive
architectural constraints. LiSCIA has two major phases
(start-up phase and evaluation phase). The following
are the steps to derive architectural constraints.

(1) Analyst prepares the following software artifacts
before the start-up phase of LiSCIA.

• Source code of a system in an IDE from the
repository using the version control system.

Source code RE

Conceptual

architecture

Dependency

structure matrix

LiSCIA

Architectural

constraints

RE: Reverse Engineering tool

RE
Report

violations

Validate

violations

Modify architectural constraints

to accept desirable features

Figure 1: Deriving architectural constraints and
detecting architectural violations

• System’s conceptual architecture and the de-
pendency structure matrix derived from the
source code using the reverse engineering tool.

(2) Start-up phase: The following are the steps during
the start-up phase of LiSCIA.

(a) Analyst explains the roles to the participants.

(b) Analyst asks the participants to skim the
LiSCIA questionnaire, which is given in Ap-
pendix B of Bandi’s dissertation [1] and also
in [3].

(c) Analyst provides the artifacts (source code,
conceptual architecture, and dependency
structure matrix) to the participants.

(d) The participants review the organization of
the source code and draw the high level
architecture diagram. During this step, they
may use the artifacts provided by the analyst.

(e) The participants define the components (log-
ical groups of functionality) of the system.

(f) The participants define the name patterns for
each component defined in the above step.

(g) The participants list the technologies used.

(3) Evaluation phase: Given the overview report from
the start-up phase of LiSCIA, the following steps
are performed by the participants to derive archi-
tectural constraints.

(a) Answer the LiSCIA questionnaire and note
the architectural constraints by evaluating
the component dependencies, namely draft
constraints. These are represented in can-
use/cannot-use phrases.

(b) The draft constraints are verified by the ex-
pert resulting in the final architectural con-
straints.

Given the architectural constraints of a system, the
following are the steps to discover the architectural
violations from the derived constraints. Repeat the
following until the expert identifies no more desirable
features among the violations.

(1) Analyst runs Lattix to identify architectural viola-
tions on all versions of interest.

(2) The expert validates the architectural violations
identified by Lattix in the above step to determine
whether violations are in fact desirable features of
the system, rather than violations.

(3) If any architectural constraints are not correct

(a) Modify the constraints so that desirable fea-
tures are no longer flagged as violations by
Lattix.

The number of discovered violations in each version,
i, is called net violations (Vnet,i). The following are the
quantities that are calculated from the list of validated
violations.

• New violations (Vnew,i): The number of unique vi-
olations that occurred in a version i, excluding the
violations that occurred in the previous version,
i−1. For the initial version of a system, the number
of new violations is equal to the net violations.

• Solved violations (Vsolved,i): The number of vio-
lations that are missing from the previous version,
i−1. For the initial version of a system, the number
of solved violations is equal to zero.

• Reoccurred violations (Vreoccur,i): The number of
solved violations in the previous versions that
reappeared in the version i. For the initial version
of a system, the number of solved violations is
equal to zero.

The term ‘decay’ emphasizes time, we considered the
development time of the systems using the released
dates of the versions. The following terms are defined
for a version i.

• time (ti): The development time of version i.

• Time (Ti): The cumulative development time from
the beginning of the project until the version i.

• Code decay for version i (cdi): This is a measure
of a type of code decay for a given version i since
the last release.

• Net code decay (CDi): For a version i, the net code
decay, which is a measure of a type of code decay,
is defined as the net violations divided by the
cumulative development time from the beginning
of the project when decay was zero.

• Overall code decay (CDn): The value of overall
code decay, which is a measure of a type of code
decay, is calculated from the initial version to the
final version.

To assess code decay over multiple versions, the
analyst collects the data for net violations (Vnet,i) for all
the versions of a system from Lattix. Then according to
the above definitions, the analyst calculates the value
of code decay cdi for version by version, net value of
code decay CDi for a version i, and the overall code
decay CDn of the system.

3 Case study

We selected an anonymous proprietary system for our
case study. The roles of the participants in our case
study are explained in Section 2. We limited our
search to a proprietary system because accessibility
to the expert (architect or team lead) of the system
is an important element of our methodology. Other
requirements are frequent short-term commits to the
code repository, and compilable source code which is
necessary to get all the runtime dependencies. The
source code of the system was available in a repository
to allow extracting the conceptual architecture and de-
pendency structure matrix using Lattix. The versions
of the target system were released and in production.

We selected 14 released versions of the system devel-
oped in the Java programming language from August
2008 to May 2014. The participants of this study
were the software architect and a software developer
for expert and evaluator roles respectively. The Java
classes and interfaces grew from 367 to 935 classes and
27 to 101 interfaces over 14 versions respectively.

In this study, the roles of evaluator, expert, and
analyst were fulfilled by different individuals. The
expert role was fulfilled by the architect of the project.
The expert had 8 years of experience in developing
several software systems in Java. The evaluator, who
participated in deriving the architectural constraints,
had 9 years of programing experience in Java. The
evaluator role was fulfilled by the GUI and business
rules developer of the system. The researcher fulfilled
the analyst role.

The case study procedure was interleaved with the
research methodology procedure. The researcher asked
participants to “think aloud” while drawing the high

level architecture and defining the components of the
system. The researcher noted the discussions between
the participants. Noting these discussions helped
gather insights into the system in the case study. After
deriving the architectural constraints, the researcher
interviewed the participants to collect the demographic
information, session questions, and feedback on the
whole process. The researcher in the role of analyst
collected architectural violations of different versions
using Lattix.

4 Results and Analysis

We executed the methodology given in Section 2.

4.1 Derive architectural constraints

At the beginning of the case study, the analyst provided
the artifacts of the first release to the participants
(expert and evaluator). These artifacts included Java
source code in the Eclipse IDE, a conceptual archi-
tecture, and a dependency structure matrix of the
first release. The conceptual architecture and the
dependency structure matrix were derived from source
code by Lattix.

During the start-up phase of LiSCIA the participants
drew the high level architecture of the given version.
They referred to the conceptual architecture and the de-
pendency structure matrix provided by the researcher.
Then, the participants defined the components of the
system. The source code of the software was divided
into logical groups of functionality. The participants
divided the system into six components: Graphical
User Interfaces (GUI), input processing, persistence,
security, utilities, and reporting.

For each component, the participants determined
source files belong to it by defining a pattern on the
directory and file names. In general, a single file
should only be matched to a single component, but
in this case, the architecture was not well defined for
the project at the time of development, so the same
name-pattern matches three different components. The
name-patterns for the components are the following.

• GUI — *.jsp

• Input processing —
webapp/*/*/*.xml, *validator.java,

validator.xml

• Persistence

(1) Model — model/*.java

(2) Services — services/*.java

(3) Lucene — dao/hibernate/*.java

• Security — security/*

• Utilities — util.*

• Reporting — reporting/*.java, reports/*.xml

The participants listed the technologies they used in
developing the system. They used MySQL, Hibernate,
Spring, Maven, Lucene, Jackson (JSON), Apache Tiles,
Apache Commons, Apache HttpClient, Apache Taglibs,
Liquibase, C3PO, JASPR, Castor, OpenLDAP, DWR,
JQuery, Ajax, Prototype, Script.aculo.us, DBUnit,
Java.x.mail, Log4J, Display tag, SLF4J, Axix, CGLib,
WSDL4J, JavaAssist, and DB2.

In the evaluation phase of LiSCIA, the participants
used the information from the start-up phase to evalu-
ate the architecture with a goal of deriving the architec-
tural constraints. The participants mostly concentrated
on the evaluation of component dependencies. To
get the details of the dependencies, they used the
dependency structure matrix given by the analyst.
The participants discussed circular dependencies, un-
expected dependencies, and which component depends
on most of the other components. The participants
listed the software architectural constraints represented
by can-use or cannot-use phrases. They were services
can use model, model cannot use services, utils can be
used statically anywhere, GUI can use taglibs, taglibs
cannot use GUI, taglibs cannot use services, services
cannot use converters, framework cannot use services,
webservices cannot use reporting, webservices cannot
use taglib, webservices cannot use dwr, services can
use dao, services can use dao.hibernate, dao cannot
use services, dao.hibernate cannot use services, GUI
cannot use services, GUI cannot use dao, GUI cannot
use dao.hibernate, persistence cannot use services, dao
cannot use services package, and genericHibernate class
cannot use auditService class.

The only major architecture change occurred before
the release of the eighth version. New architectural
constraints were added at that point and no constraints
were removed. The new constraints were enum cannot
use services, enum cannot use dao, and enum cannot
use listeners.

The above software architectural constraints were
derived by the expert and evaluator. Then, they were
interviewed by the researcher for their feedback on the
session. Both the expert and the evaluator were very
confident when deriving the architectural constraints
they did not miss any constraints. The time taken
to derive the constraints was 2 to 2.5 hours including
the interview sessions. Once again, the constraints
were reviewed by the expert to finalize them before
discovering violations. They suggested that a formal

Table 1: Violations count over multiple versions of System
Version i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Vnet,i 46 47 50 50 54 54 58 26 28 24 28 29 51 56

Vsolved,i 0 4 3 0 0 0 0 44 0 4 0 0 1 9

Vnew,i 46 5 6 0 4 0 4 12 2 0 4 1 23 14

Vreoccur,i 0 0 0 0 0 0 0 0 0 0 0 0 0 0

example of LiSCIA would be helpful to derive the
constraints more quickly.

The net violations (Vnet,i) for all the versions were
discovered by Lattix and the values of Vnet,i are given
in Table 1. The class reference type of violations
were the most numerous in various versions (about
40%). Method calls (virtual invocation) were second
most numerous type of violation in the system. Null
constructor, static, and extends types of violations were
highest to lowest percentage of remaining violations.

Table 1 shows that the number of net violations
also increased in the first seven versions of the system.
Thereafter there was a sudden decrease in number of
violations. There was a major architecture change
before the eighth version which was created for both
the application’s framework enhancements and also for
the initial development of a new business module called
the Trade Services module. These framework enhance-
ments were mainly aimed to reduce the number of
classes and the number of lines of code by consolidating
classes, and reusing classes.

One such example is the Conversion classes which
convert the data encapsulated in an entity to a desired
format. Initially the system had a ConversionService

class for each entity, but the developers had to keep
on adding classes or additional lines of code for dif-
ferent types of conversions for the same entity. So
during the enhancements between versions 7 and 8,
developers refactored the source code by deleting the
ConversionService and opted for JSP tags to condi-
tionally display the desired format for each entity.

In the eighth version, the outcome of the framework
enhancements reduced the number of classes. But at
the same time, the initial development of the Trade
module brought in its own classes. Later on, a spurt
in the number of classes was the outcome of this
combined effort to enhance the framework and to add
the functionality of the Trade module. The expert
explained that the increase in the net violations from
the twelfth version to the thirteenth version was due
to new developers who worked on the release, the
code review system was not strictly enforced, and
limited time was allocated to design and analysis of the
requirements.

4.2 Find new, solved, and reoccurred
violations

After discovering the net violations (Vnet,i), we man-
ually compared these violations from one version to
the next version and found the new violations (Vnew,i),
solved violations (Vsolved,i), and reoccurred violations
(Vreoccur,i). Table 1 shows the counts of Vnew,i,
Vsolved,i, and Vreoccur,i in all the versions. We assigned
a unique ID for each violation to track the life cycle of
that violation in different versions. In this study, once
the violations were solved in a version, that violation
did not reappear in later versions. Therefore Vreoccur,i

is zero for all versions in this case study.

In the release of eighth version, due to the framework
enhancements, which included changes to the archi-
tecture there was an increase in the number of solved
violations. Reorganization of several classes solved 44
violations. Table 1 shows that the new violations also
increased during the eighth version, due to adding a new
business module to the system. In the later versions,
the violations were removed in the source code because
developers refactored by deleting class references and
virtual invocations.

4.3 Assess code decay over multiple
versions

The released dates of the versions were collected from
the revision control system. For a given version i, the
number of working days since the last release, time (ti)
in work weeks, and the cumulative development time
from the beginning of the project for each version (Ti),
also in work weeks, were calculated. We then computed
the code decay values for each version (cdi), the net
code decay (CDi) using respectively. The values of ti,
Ti, cdi, and CDi of the system are given in Table 2.
An ideal system follows all the architectural constraints
without any architectural violations. Therefore the
value of code decay for such system is 0 violations/week.

Figure 2 shows the code decay values (cdi) for each
release. The cdi measurements in this graph can give
a manager insight into the the process of software
development. “Did the development of this version
cause further code decay?” Before the major change
in architecture of the system, the code decay value cdi

Table 2: Development time and code decay values of System
Version i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Work days 412 12 12 10 16 36 40 440 36 34 17 28 240 122

ti 82.4 2.4 2.4 2.0 3.2 7.2 8.0 88 7.2 6.8 3.4 5.6 48 24.4

Ti 82.4 84.8 87.2 89.2 92.4 99.6 107.6 195.6 202.8 209.6 213.0 218.6 266.6 291

cdi 0.56 0.42 1.25 0.00 1.25 0.00 0.50 -0.36 0.28 -0.59 1.18 0.18 0.46 0.20

CDi 0.56 0.55 0.57 0.56 0.58 0.54 0.54 0.13 0.14 0.11 0.13 0.13 0.19 0.19

ti and Ti are in work weeks; cdi and CDi in violations per week

Code decay release by release. It gives the insights about the process.

-1

-0.5

0

0.5

1

1.5

0 25 50 75 100 125 150 175 200 225 250 275 300

co
d
e

d
ec

ay
 (

cd
i
)

in

v
io

la
ti

o
n

s/
w

ee
k

Time (Ti) in work weeks

Major change in

architecture

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16

N
et

 v
io

la
ti

o
n
s

(V
n

et
,i
)

Version of System B

Major change in

architecture

Figure 2: Code decay for each release in System

varied from 0 to 1.25 violations/week. When compared
to an ideal system, the code decay value (cdi) was posi-
tive because of increase in the number of new violations
compared to solved violations. The expert explained
that the developers focused on the functionality of the
software and not on the architectural constraints.

After the change in architecture, the code decay
values (cdi) varies from −0.59 to 1.18 violations/week.
When compared to an ideal system’s code decay value
of 0 violations/week, the code decay value (cdi) of two
versions after the change in architecture had negative
values because there were more solved violations than
new violations. This is because the developers con-
centrated on the enhancements. Figure 3 shows the
net code decay (CDi) values of each version from the
start date of the project. The CDi measurements
in the graph give a manager insight into the status
of the software product from its start date. “Is the
product’s average code decay worse or better than the
past version?” This graph gives the status of the
software product from its start date. The net code
decay values are positive because it considers only net
violations over the time period since the beginning of
the project Ti. The net code decay value decreased
after the change in architecture and was stable for later
versions. For an ideal system, the net code decay value
is 0 violations/week. The overall code decay (CDn)
of the system at the end of the study period was 0.19
violations/week.

Net violations/time gives insights about the product.

Overall code decay:

Sum of new violations-Sum of solved violations= 121-65 = 0.19violations/week.

Total time in work weeks 291

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

75 95 115 135 155 175 195 215 235 255 275 295

co
d
e

d
ec

ay
 (

C
D

i)
 i

n

v
io

la
ti

o
n
s/

w
ee

k

Time (Ti) in work weeks

Major change in

architecture

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16

N
u
m

b
er

 o
f

v
io

la
ti

o
n

s

Version of System B

Solved Violations New Violations

Figure 3: Code decay since beginning of the System

5 Discussion

5.1 Results and Lessons Learned

We conducted a case study on a proprietary system. In
this case study, we started our code decay assessment
by deriving the architectural constraints. We applied
Lattix and LiSCIA as a part of our methodology to
derive architectural constraints. These constraints are
represented by can-use and cannot-use phrases. The
expert of the system validated our derived architectural
constraints before and after discovering the architec-
tural violations. The subjects who participated in
our study had software development experience varying
from 8 to 9 years. The participants were confident
that they hit all the important constraints of packages
or classes of the system. Our participants did not
include any constraints regarding extensions of classes
from the Spring framework since we were aware that
several classes used external libraries. They spent more
time in evaluating the components section of the review
phase of LiSCIA to derive the constraints. They did not
spend much time on other sections in the review phase
of LiSCIA. Some of the participant’s comments from
the interview session are the following.

• One of the participants mentioned that deriving
the rules was easier since they used a Model-
View-Controller (MVC) framework in implement-
ing their system.

• The start-up phase of LiSCIA helped participants
to recall design decisions on other larger projects.

• Participants suggested having a formal example of
LiSCIA to help speed the process of learning our
methodology for deriving architectural constraints.

• It was difficult for participants to define the com-
ponents of the system, which are logical functional
units of the implemented system.

• They said that if they had followed the evaluation
of components section in the review phase of LiS-
CIA while developing the system, they would have
followed all the architectural constraints resulting
in no architectural violations in the system.

Other researchers [5, 11] have analyzed the evolution
of architectures by considering the early version’s ‘uses’
relationships as their constraints or considering the
architecture style rules as their constraints. However,
they did not concentrate on recovering architecture
constraints from the implemented system. We propose
a methodology that uses LiSCIA and a reverse engi-
neering tool to derive architectural constraints from the
implemented architectures. Our results and qualitative
analysis of the case study showed that the methodology
was effective and required a practical level of effort for
a moderate sized software system.

Our methodology includes the detection of archi-
tectural violations based on constraints derived using
LiSCIA. We used Lattix as a part of our methodology
to detect architectural violations. We validated the
violations with the system experts. Violations may
be resolved if the expert modifies the architectural
constraints for any desirable features that were flagged
as violations. In our case study, the experts did not
choose to modify the constraints while validating the
violations. We categorized the discovered violations
and we found that ‘class reference’ type violations
were the highest percentage among all the violations
in our case study. The number of net violations Vnet,i

decreased after changes in the architecture. Our results
and qualitative analysis show that our methodology
effectively detected and validated the architectural
violations for a given list of constraints expressed by
can-use and cannot-use phrases.

The net violations (Vnet,i) were discovered using
Lattix. Then, we found the Vnew,i, Vsolved,i, and
Vreoccur,i by comparing the Vnet,i. The term ‘decay’
emphasizes time, we considered the development time
of the systems using the released dates of the versions.
Second, we computed the following code decay values
in violations per week.

• Code decay for a version (cdi) — This measure
gives a manager insight into the process of soft-
ware development. “Did the development of this
revision cause further code decay?”

• Net code decay (CDi) — This measure gives a
manager insight into the software product from the
beginning of the project. “Is the product’s average
code decay worse or better than the past version?”

• Overall code decay (CDn) — This measure gives a
value of code decay for the current system. “Does
the current system have unresolved violations and
what has been the average rate of violations,
namely code decay?”

For the case study system, the values of cdi and CDi

were fluctuating in the beginning of the project and
decreased at the end of the final version of the study.
The increase in Vnew,i and decrease in Vsolved,i increased
the code decay values. This means the existence of
violations in the system increased the code decay values
and solving or repairing violations decreased the value
of code decay. From the case study we observed that the
developer-driven reasons for introducing architectural
violations were that inexperienced or novice developers
worked on a few releases, and developers focused on
pure functionality of the system. The process-driven
reasons for architectural violations were the code review
system was not strictly enforced, limited time allocation
to design and analysis of the requirements, change in
requirements from the client, and the project release
deadlines.

5.2 Threats to validity

Construct validity: In our case study we were limited
to can-use and cannot-use architectural relationships.
There are other kinds of architectural rules also. We
chose calender time to calculate the rate for code decay
rather than other measures of time (for example, level
of developers’ effort).

Internal validity: Case study does not control factors
the way a controlled experiment does. Thus our
research questions did not explore cause-effect relation-
ships.

External validity: Our case study system is database
intensive, has web browser interfaces and is used by
government clients. Our case study results (architec-
tural constraints, architectural violations, and values
of code decay) cannot be generalized to all kinds of
systems. However, our methodology and code decay
measurement techniques can be replicated on other
systems.

6 Conclusions and Future Work

Using Lattix and LiSCIA, we developed a method
to derive architectural constraints. To evaluate the
proposed methodology, we conducted a case study
where we validated the derived architectural constraints
with experts of the system. Our empirical results
and qualitative analysis showed that the methodology
was effective and required a practical level of effort
for moderate sized software systems. Using Lattix
we developed a method to discover architectural vi-
olations. To evaluate the proposed methodology, we
conducted a case study where we validated the discov-
ered architectural violations with experts of the system.
Our results and qualitative analysis showed that the
methodology was effective in detecting architectural
violations for a given list of constraints that represent
can-use and cannot-use rules. ‘Class reference’ was
the major architectural violation category experienced
in the case study software system. A large number
of class reference violations in the software increases
undesirable coupling which makes the system hard to
maintain. New violations in a system increases the
code decay values (cdi, CDi, and CDn) and solving or
repairing violations decreases the value of code decay.
Degradation over multiple versions is key to the concept
of “decay.” This means that over time, the system
becomes harder to change than it should be. This
also illustrates that systems have various decay histories
over time.

Researchers should conduct case studies on deriving
architectural constraints using other architectural rela-
tionships such as composition of modules, aggregation
of modules, and database relationships besides can-
use and cannot-use relationships. Researchers could
perform research to analyze the code decay of systems
by considering the level of effort of the developers on
the project instead of calender time.

References

[1] Ajay Bandi. Assessing code decay by detecting
architectural violations. PhD thesis, Mississippi
State University, December 2014.

[2] Ajay Bandi, Byron J. Williams, and Edward B.
Allen. Empirical evidence of code decay: A
systematic mapping study. In Proceedings:
20th Working Conference on Reverse Engineering,
pages 341–350.

[3] Eric Bouwers. Metric-based Evaluation of Im-
plemented Software Architectures. PhD thesis,
University of Delft, January 2013.

[4] Eric Bouwers and Arie van Deursen. A lightweight
sanity check for implemented architectures. IEEE
Software, 27(4), 2010.

[5] Joao Brunet, Roberto Almedia Bittercourt, Dalton
Serey, and Jorge Figueiredo. On the evolutionary
nature of architectural violations. In Proceedings:
19th Working Conference on Reverse Engineering,
pages 257–266, 2012.

[6] Stephen G. Eick, Todd L. Graves, Alan F. Karr,
J. S. Marron, and Audris Mockus. Does code
decay? Assessing the evidence from change
management data. IEEE Transactions on Software
Engineering, 27(1):1–12, 2001.

[7] Michael W. Godfrey and Eric H. S. Lee. Secrets
from the monster: Extracting Mozilla’s software
architecture. In Proceedings: 2nd International
Symposium on Constructing Software Engineering
Tools, 2000.

[8] L. Hochstein and M. Lindvall. Diagnosing
architectural degeneration. In Proceedings: 28th
Annual NASA Goddard Software Engineering
Workshop, pages 137–142, 2003.

[9] M. Lindvall, R. Tesoriero, and P. Costa. Avoiding
architectural degeneration: An evaluation process
for software architecture. In Eighth IEEE
Symposium on Software Metrics, pages 77–86,
2002.

[10] Steffen M. Olbrich, Daniela S. Cruzes, Victor
Basili, and Nico Zazworka. The evolution and
impact of code smells: A case study of two open
source systems. In Proceedings: 3rd International
Symposium on Empirical Software Engineering
Measurement, 2009.

[11] Leonardo Passos, Ricardo Terra, Marco Tuilo
Valente, Renato Diniz, and Nabor Mendonca.
Static architecture conformance checking: An
illustrative overview. IEEE Software, 27(5):82–89,
2010.

[12] Roseanne Tesoriero Tvedt, Patricia Costa, and
Mikael Lindvall. Does the code match the
design? A process for architecture evaluation. In
Proceedings: International Conference on Software
Maintenance, pages 393–401, 2002.

[13] Aiko Yamashita and Leon Moonen. Do code smells
reflect important maintainability aspects? In
Proceedings: IEEE International Conference on
Software Maintenance, pages 306–315, 2012.

